Practical Management of Anticoagulation for Impella Percutaneous Mechanical Circulatory Support

Background
- There are many percutaneous ventricular assist devices (e.g., Intra-aortic balloon pump, Impella, TandemHeart).
- Impella devices are most widely used and are the focus of this resource.
- Indications: for hemodynamic support during high-risk PCI and/or ongoing cardiogenic shock.
- Mechanism: catheter-based transvalvular microaxial pump that aspirates blood from left ventricle into the aorta.
- Heparin-based purge solution is essential to create a positive purge pressure, lubricate bearings, and prevent ingress of blood into the motor.
- IV UFH can be supplemented to maintain adequate systemic anticoagulation needed to prevent thrombus formation.

Best practices for Impella anticoagulation
- Use only programmable pumps with pump library.
- Ensure use of institutional Impella-specific anticoagulation protocol.
- Use standardized, evidence-based reversal and peri-procedural protocols when needed in Impella patients.
- Use premixed commercial heparin infusion bags whenever possible to avoid errors.
- Utilize multidisciplinary approach to Impella management.
- Require tracking and reporting of adverse events associated with Impella.
- Review and update local Impella protocols at least annually to ensure contemporary, optimized care.

BOTTOM LINE

<table>
<thead>
<tr>
<th>DO</th>
<th>DON’T</th>
<th>CONSIDER</th>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Use UFH 25 U/mL in D5W as default purge</td>
<td>• Use saline in purge solution</td>
<td>• Bicarbonate-based purge (25mEq per 1000mL) when UFH not feasible due to bleeding, active HIT or consistently supratherapeutic UFH levels</td>
<td>• D5W alone in the purge if bicarbonate not available</td>
</tr>
<tr>
<td>• Supplement IV UFH as needed</td>
<td>• Use other anticoagulants (DTI, LMWH, fondaparinux) in purge</td>
<td>• Device controller automatically adjusts purge flow rate to target purge pressure</td>
<td>• High dextrose concentrations</td>
</tr>
<tr>
<td>• Account for both sources of heparin</td>
<td>• Use fondaparinux or DOAC for HIT in Impella patients</td>
<td>• Fibinolytic administration via the purge</td>
<td>• Fibrinolytic administration via the purge</td>
</tr>
<tr>
<td>• Have a protocol for anticoagulation with Impella</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Outlet Area

- Device controller automatically adjusts purge flow rate to target purge pressure 300-1100 mmHg. Flow rate ranges from 2-30 mL/hour.
- Heparin is the default purge solution due to unique ionic charge that prevents deposition of denatured proteins and thrombi in the purge gaps.
- The default concentration is 25 units/mL. Lower concentrations may not adequately protect the motor and higher ones may lead to over-anticoagulation.
- For patients requiring biventricular support with Impella RP and 2.5, CP or 5.0, the same purge solution should be utilized for both devices.

Purge Solution

- UFH 25 units/mL in 500-1000 mL D5W
- BBPS
 - HIT (with systemic DTI)
 - Bleeding (in absence of systemic IV UFH)
- DSW Only
 - Only if BBPS not available

Systemic IV UFH

- Depending on the purge flow rate, the patient may need additional IV heparin for adequate levels of anticoagulation (see table 1).
- If IV UFH is added to existing heparin-based purge, both sources of heparin must be accounted for as both will contribute to systemic AC.
- If concomitant ECMO is indicated (Ecpella), UFH cannulation bolus should be reduced to account for UFH in purge solution.

TABLE 1 – Monitoring of UFH

<table>
<thead>
<tr>
<th>ASSAY</th>
<th>FREQUENCY</th>
<th>TARGET RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT</td>
<td>Baseline, then q4h after each assessment or dose change until at target x 2, then q 6h</td>
<td>161-180 sec</td>
</tr>
<tr>
<td>aPTT (Lab Specific)</td>
<td>Baseline then q6h after each assessment or dose change until at target x 2 then qAM</td>
<td>Aim for low intensity equivalent to anti-Xa of 0.2-0.4 (e.g., 40-60 seconds)</td>
</tr>
<tr>
<td>Anti-FXa</td>
<td>Baseline then q6h after each assessment or dose change until at target x 2 then qAM</td>
<td>0.2-0.4 IU/ml</td>
</tr>
</tbody>
</table>
EXAMPLE: using 80 kg patient

Total desired UFH dose = 12 units/kg/hr (typical low-intensity ACS heparin protocol)
12 units X 80 kg = 960 units/hr UFH

Calculator will round to nearest 100 units (in this case, 1000 units/hr)

Anticoagulation Therapy with Impella® Heparin Infusion

Total Heparin Delivered to Patient (Rate)

<table>
<thead>
<tr>
<th>Rate (U/hr)</th>
<th>U/Hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000.00</td>
<td>U/Hr</td>
</tr>
</tbody>
</table>

Determine heparin from purge solution

Purge concentration in units/ml X purge flow rate in ml/hour = purge UFH in ml/hr

Calculate Impella Delivered Heparin Rate

Heparin Concentration in Purge from AIC*

<table>
<thead>
<tr>
<th>Concentration (U/ml)</th>
<th>Input purge UFH concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.00</td>
<td></td>
</tr>
</tbody>
</table>

Purge Flow Rate from AIC*

<table>
<thead>
<tr>
<th>Flow Rate (mL/hr)</th>
<th>mL/Hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.00</td>
<td></td>
</tr>
</tbody>
</table>

Impella Delivered Heparin Rate

<table>
<thead>
<tr>
<th>Rate (U/hr)</th>
<th>U/Hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>375.00</td>
<td>U/Hr</td>
</tr>
</tbody>
</table>

Total desired UFH – purge delivered UFH = systemic IV UFH rate

1000 u/hr – 375 units/hr = 625 units/hr

Results

Systemic IV Heparin Rate

<table>
<thead>
<tr>
<th>Rate (U/hr)</th>
<th>U/Hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>625.00</td>
<td>U/Hr</td>
</tr>
</tbody>
</table>

Abbreviations:

- UFH—unfractionated heparin
- IV—intravenous
- DTI—direct thrombin inhibitor
- LMWH—low-molecular weight heparin
- DOAC—direct acting oral anticoagulant
- HIT—heparin-induced thrombocytopenia
- mEq—milliequivalent
- mL—milliliter
- DSW—dextrose 5% water
- PCI—percutaneous coronary intervention
- L—liter
- CP—cardiac power
- mmHG—millimeters mercury
- BBPS—bicarbonate-based purge solution
- ECMO—extracorporeal membrane oxygenation
- Ecpella—ECMO with Impella
- ACT—activated clotting time
- aPTT—activated partial thromboplastin time
- IU—international units
- qAM—every morning
- Hgb—hemoglobin
- kg—kilogram

Calculations:

- Total desired UFH dose: 12 units/kg/hr \times 80 kg = 960 units/hr
- Calculator will round to nearest 100 units (in this case, 1000 units/hr)
- Purge concentration in units/ml \times purge flow rate in ml/hour = purge UFH in ml/hr
- Total desired UFH – purge delivered UFH = systemic IV UFH rate

References:

ACE Rapid Resources are not clinical practice guidelines; they are Anticoagulation Forum, Inc.’s best recommendations based on current knowledge, and no warranty or guaranty is expressed or implied. The content provided is for informational purposes for medical professionals only and is not intended to be used or relied upon by them as specific medical advice, diagnosis, or treatment, the determination of which remains the responsibility of the medical professionals for their patients.

Authors: Allison Burnett, PharmD, PhC, CACP; Craig Beavers, PharmD, FACC, FAHA, FACP; Brett N. Reed, PharmD., BCPS-AQ Cardiology, CACP; Douglas Jennings, PharmD, FACC, FAHA, FACP, FHFSA, BCPS

This content was developed independently by the Anticoagulation Forum. Support for this project provided by Abiomed.